STATISTICS 4CI3/6CI3

Winter 2019
Dr. Angelo Canty

TERM TEST Solutions

Note: I decided to mark each question out of 20 instead of 10 which was specified on the exam paper to avoid half-marks. Each question is still equally weighted and the test is still worth the same amount in the calculation of your final grade!
Q. 1 First we need the probability mass function and cumulative distribution function of the random variable X that we wish to generate. From the equation given we have

x	1	2	3	4
$f(x)$	0.30	0.05	0.20	0.45
$F(x)$	0.30	0.35	0.55	1.00

A straightforward implementation of the inversion method is then

1. Generate $U \sim \operatorname{Uniform}(0,1)$.
2. If $U<0.30$ Return $\mathrm{X}=1$

Else If $U<0.35$ Return $\mathrm{X}=2$
Else If $U<0.55$ Return $\mathrm{X}=3$
Else Return $\mathrm{X}=4$
[10 marks]
An alternative algorithm that is more efficient (not required) is

1. Generate $U \sim \operatorname{Uniform}(0,1)$.
2. If $U<0.45$ Return $\mathrm{X}=4$

Else If $U<0.75$ Return $\mathrm{X}=1$
Else If $U<0.95$ Return $\mathrm{X}=3$
Else Return $\mathrm{X}=2$
Full marks were given for either of these algorithms (or any other equivalent ones).
Note that the two algorithms will not give the same sequence of random numbers. Below I give the results for both algorithms (X_{1} comes from the first and X_{2} comes from the second) but, of course, you only needed to give the results for your algorithm.

U	0.5197	0.1790	0.9994	0.2873	0.7294	0.5791	0.0361	0.3281	0.2026	0.8213
X_{1}	3	1	4	1	4	4	1	2	1	4
X_{2}	1	4	2	4	1	1	4	4	4	3

Q. 2 This question requires first translating the R code into mathematics and then proving the final result.

From the first two lines we get two independent vectors of length n

$$
\begin{array}{lll}
U_{11}, \ldots, U_{1 n} & \stackrel{i i d}{\sim} & \operatorname{Uniform}(0,1) \\
U_{21}, \ldots, U_{2 n} & \stackrel{i i d}{\sim} & \operatorname{Uniform}(0,1)
\end{array}
$$

[2 marks]

From the next line we have $X_{i}=-\log \left(U_{1 i}\right) \quad i=1, \ldots, n$.
Since the $U_{1 i}$ are $i i d$ so are the X_{i} and the cumulative distribution function of X_{i} is given by

$$
\begin{aligned}
F_{X_{i}}(x) & =\mathrm{P}\left(X_{i} \leqslant x\right) \\
& =\mathrm{P}\left(-\log \left(U_{1 i}\right) \leqslant x\right) \\
& =\mathrm{P}\left(U_{1 i} \geqslant \mathrm{e}^{-x}\right) \\
& = \begin{cases}1-\mathrm{e}^{-x} & x>0 \\
0 & x \leqslant 0\end{cases}
\end{aligned}
$$

We may recognise this as the cdf for the exponential(1) distribution.

The fourth line defines the iid vector Y_{1}, \ldots, Y_{n} as

$$
Y_{i}=\left\{\begin{array}{rl}
X_{i} & \text { if } U_{2 i}<0.5 \\
-X_{i} & \text { if } U_{2 i} \geqslant 0.5
\end{array} \quad i=1, \ldots, n .\right.
$$

Now we get the cdf of Y_{i} as follows.

$$
\begin{aligned}
F_{Y_{i}}(y)=\mathrm{P}\left(Y_{i} \leqslant y\right) & =\mathrm{P}\left(Y_{i} \leqslant y \mid U_{2 i}<0.5\right) \mathrm{P}\left(U_{2 i}<0.5\right)+\mathrm{P}\left(Y_{i} \leqslant y \mid U_{2 i} \geqslant 0.5\right) \mathrm{P}\left(U_{2 i} \geqslant 0.5\right) \\
& =0.5 \mathrm{P}\left(X_{i} \leqslant y\right)+0.5 \mathrm{P}\left(-X_{i} \leqslant y\right) \\
& =0.5 \mathrm{P}\left(X_{i} \leqslant y\right)+0.5 \mathrm{P}\left(X_{i} \geqslant-y\right)
\end{aligned}
$$

It is easiest to consider the two cases of $y<0$ and $y>0$ separately. First we consider $y<0$ in which case we have

$$
\mathrm{P}\left(X_{i} \leqslant y\right)=0 \quad \text { and } \quad \mathrm{P}\left(X_{i} \geqslant-y\right)=1-F_{X_{i}}\left(-y_{i}\right)=\mathrm{e}^{y}
$$

and so the cdf for Y_{i} at a point $y<0$ is

$$
F_{Y_{i}}(y)=\mathrm{e}^{y} \quad \text { for } y<0
$$

Next for $y \geqslant 0$ we have

$$
\mathrm{P}\left(X_{i} \leqslant y\right)=F_{X_{i}}(y)=1-\mathrm{e}^{-y} \quad \text { and } \quad \mathrm{P}\left(X_{i} \geqslant-y\right)=1
$$

Hence the cdf for Y at a point $y>0$ is

$$
F_{Y_{i}}(y)=0.5\left(1-\mathrm{e}^{-y}\right)+0.5=1-0.5 \mathrm{e}^{-y} \quad \text { for } y<0
$$

Putting these together we have

$$
F_{Y_{i}}(y)= \begin{cases}\mathrm{e}^{y} & y<0 \\ 1-\mathrm{e}^{-y} & Y \geqslant 0\end{cases}
$$

Taking derivatives to get the probability density function for Y_{i} we have

$$
\begin{aligned}
g(y) & =\frac{d F_{Y_{i}}(y)}{d y} \\
& = \begin{cases}0.5 \mathrm{e}^{y} & y<0 \\
0.5 \mathrm{e}^{-y} & y \geqslant 0\end{cases} \\
& =0.5 \mathrm{e}^{-|y|} \quad y \in \mathbb{R}
\end{aligned}
$$

and since the vector of Y_{1}, \ldots, Y_{n} is the returned value we see that this function returns an independent sample of size n from the standard Laplace distribution.
Q. 3 First we note that

$$
x^{2}-2|x| \geqslant-1 \quad \Longleftrightarrow \quad x^{2}-2|x|+1 \geqslant 0 \quad \Longleftrightarrow \quad(|x|-1)^{2} \geqslant 0
$$

and we note that $(|x|-1)^{2}>0$ unless $|x|=1$ in which case we have $(|x|-1)^{2}=0$ so we have proven that $x^{2}-2|x| \geqslant-1$.
[4 marks]
Now the ratio of densities is

$$
\begin{aligned}
\frac{f(x)}{g(x)} & =\frac{\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}}{\frac{1}{2} \mathrm{e}^{-|x|}} \\
& =\sqrt{\frac{2}{\pi}} \exp \left\{-\frac{x^{2}}{2}+|x|\right\} \\
& =\sqrt{\frac{2}{\pi}} \exp \left\{-\frac{1}{2}\left(x^{2}-2|x|\right)\right\} \\
& \leqslant \sqrt{\frac{2}{\pi}} \exp \left\{\frac{1}{2}\right\} \quad \text { because }-\frac{1}{2}\left(x^{2}-2|x|\right) \leqslant \frac{1}{2} \text { from above } \\
& =\sqrt{\frac{2 \mathrm{e}}{\pi}}
\end{aligned}
$$

[8 marks]
Based on this bound $M=\sqrt{\frac{2 \mathrm{e}}{\pi}}$ we see that the acceptance probability for any candidate Y is

$$
\mathrm{P}(\text { Accept })=\frac{f(Y)}{M g(Y}=\frac{\sqrt{\frac{2}{\pi}} \exp \left\{-\frac{1}{2}\left(x^{2}-2|x|\right)\right\}}{\sqrt{\frac{2 \mathrm{e}}{\pi}}}=\exp \left\{-\frac{1}{2}(|Y|-1)^{2}\right\}
$$

Hence an algorithm to generate standard normals using the standard Laplace candidate density is

1. Generate $Y \sim$ Standard Laplace using code such as given in Question 2.
2. Generate $U \sim \operatorname{Uniform}(0,1)$ independent of Y.
3. If $U \leqslant \exp \left\{-\frac{1}{2}(|Y|-1)^{2}\right\}$ then return Y

Otherwise discard Y and U and return to Step 1.
Q. 4 Consider the change of variables $u=\mathrm{e}^{-x^{2}}$ in the integration. Then we have $d u=-2 x \mathrm{e}^{-x^{2}}$ and $x=\sqrt{-\log (u)}$.
[2 marks]
We get the limits of integration by noting that

$$
x=0 \Rightarrow u=1 \quad \text { and } \quad x \rightarrow \infty \Rightarrow u \rightarrow 0
$$

[2 marks]
Hence the integral becomes

$$
\begin{aligned}
I=\int_{0}^{\infty} x^{2} \mathrm{e}^{-x^{2}} d x & =\int_{0}^{\infty}\left(-\frac{x}{2}\right) \times\left(-2 x \mathrm{e}^{x^{2}} d x\right) \\
& =\int_{1}^{0}-\frac{\sqrt{-\log (u)}}{2} d u \\
& =\int_{0}^{1} \frac{\sqrt{-\log (u)}}{2} d u
\end{aligned}
$$

[5 marks]
We recognise this last expression as an expected value for the Uniform $(0,1)$ random variable so we have $I=0.5 \mathrm{E}(\sqrt{-\log (U)})$ where $U \sim \operatorname{Uniform}(0,1)$.
Hence the Monte Carlo estimator is

$$
\hat{I}=\frac{1}{2 N} \sum_{i=1}^{N} \sqrt{-\log \left(U_{i}\right)} \quad \text { where } U_{1}, \ldots, U_{N} \stackrel{i i d}{\sim} \operatorname{Uniform}(0,1)
$$

[3 marks]
Now we must derive the standard error of the estimator

$$
\begin{aligned}
\operatorname{Var}(\hat{I}) & =\frac{1}{4 N} \operatorname{Var}\left(\sqrt{-\log \left(U_{1}\right)}\right) \\
& =\frac{1}{4 N}\left[\mathrm{E}\left(-\log \left(U_{1}\right)\right)-\left(\mathrm{E}\left(\sqrt{-\log \left(U_{1}\right)}\right)\right)^{2}\right] \\
& =\frac{1}{N}\left[\frac{1}{4} \mathrm{E}\left(-\log \left(U_{1}\right)\right)-I^{2}\right] \\
& =\frac{1}{N}\left(\frac{1}{4}-I^{2}\right)
\end{aligned}
$$

The last expression coming because we showed in Question 2 that

$$
U \sim \operatorname{Uniform}(0,1) \Rightarrow-\log (U) \sim \operatorname{exponential}(1) \Rightarrow \mathrm{E}[-\log (U)]=1
$$

Hence the standard error is

$$
\operatorname{se}(\hat{I})=\sqrt{\frac{1-4 \hat{I}^{2}}{4 N}}
$$

Q. 5 Here is a reasonable simulation study for this case

1. Decide on d values of $\alpha \geqslant 1$ that will be used. The set must include the null case $\alpha=1$. Let us take $\alpha \in \mathcal{A}=\{1,1.2,1.4,1.5,1.6,1.8,2,2.5,3,4\}$
2. Decide on an appropriate number of simulations such as $N=10000$.
3. For each value of $\alpha_{j} \in \mathcal{A}$
3.1 Generate N samples each of size $n=20$ from a gamma distribution with parameters α_{j} and 1.
3.2 Calcualte the N sample medians $\tilde{x}_{j 1}, \tilde{x}_{j 2}, \ldots, \tilde{x}_{j} N$.
3.3 Calculate to Monte Carlo power estimate

$$
\hat{\pi}_{j}=\frac{1}{N} \sum_{k=1}^{N} I\left\{\tilde{x}_{j k}>1+\frac{10}{n}=1.5\right\}
$$

[4 marks]
3.4 Calculate the standard error of the estimate

$$
\operatorname{se}\left(\hat{\pi}_{j}\right)=\sqrt{\frac{\hat{\pi}_{j}\left(1-\hat{\pi}_{j}\right)}{n}}
$$

4. Return the d triples $\left(\alpha_{j}, \hat{\pi}_{j}, \operatorname{se}\left(\hat{\pi}_{j}\right)\right) \quad j=1, \ldots, d$ [2 marks]
